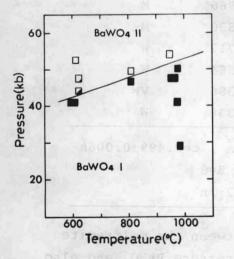

Vol. 9, No. 2

TABLE 1

0 1	6.588	6.565	М
1	E 100		
	5.188	5.174	VW
-1	4.163	4.154	Μ
1	3.980	3.977	VW
0	3.582	3.581	VW
2	3.349	3.346	S
0	3.284	3.283	S
1	3.232	3.230	S_
2		3.163	
1	3.162 3.15	3.157	S+
0	2.985	2.984	М
1	2.933	2.931	M_
2	2.895	2.893	M_
1	2.868	2.866	М
1	2.831	2.830	M_
1	2.717	2.717	W
1: 5 Mars	2.565	2.564	W
1	2.387	2.386	VW
1	2.336	2.336	W
	2 0 1 2 1 0 1 2 1 1 1 1 1	2 3.349 0 3.284 1 3.232 2 3.162 0 2.985 1 2.933 2 2.895 1 2.868 1 2.831 1 2.717 1 2.565 1 2.387	2 3.349 3.346 0 3.284 3.283 1 3.232 3.230 2 3.163 1 3.162 3.157 0 2.985 2.984 1 2.933 2.931 2 2.895 2.893 1 2.868 2.866 1 2.717 2.717 1 2.565 2.564 1 2.387 2.386


Observed and Calculated d-apacings and Unit Cell

these patterns as depicted in Fig.1, between the wolframite structure (CdWO₄) and the present high pressure $BaWO_4$ and also PbWO₄ of high pressure form. In the figure, I and II stand for the high pressure forms of $BaWO_4$ and $PbWO_4$, respectively, and III for CdWO₄. The pattern of $PbWO_4$ is similar to that of $BaWO_4$. These patterns strongly suggest that the structure of high pressure $BaWO_4$ is different from the wolframite one. We, therefore, tentatively name the present high pressure product as $BaWO_4$ -II.

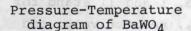


FIG. 1

Comparison between the powder patterns (CuK α) of BaWO₄-II, high pressure form of PbWO₄(3) and the wolframite structure(CdWO₄)(6).

FIG. 2

These statements are further confirmed by the structure analysis based on the four circle goniometer data. Although the details of the structure will be reported in a separate paper, it is worthwhile noting here that the average coordination number of the cations has increased as compared with that of either the wolframite- or the scheelite-structure.

Although BaWO₄-II was quenchable as described above, this was completely transformed to BaWO₄-I upon heating in air at 800°C. This

suggests that the transformation is reversible.

Phase diagram: Throuout the entire experimental runs, the product was always either a mixture of the I and II forms or a single phase of the respective one. This enables us to establish